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Abstract—Analysis of hyperspectral images is of great impor-
tance in many scientific disciplines. Obtaining the spectral and
spatial information simultaneously from time-varying hyperspec-
tral images is a challenging task due to their high dimensionality.
In this paper, we design an interface that allows users to study
hyperspectral images interactively and obtain spectral features
and enhanced images at the same time. The image fusion results
change dynamically with the regions of interest selected by users
and convey both the spatial and spectral information. We show
the usefulness of our approach using time-varying hyperspectral
plant images. We compare our method with existing hyperspec-
tral image analysis techniques. Our evaluation indicates that our
interface can help users determine important bands, identify
regions of interest, and generate image fusion results for time-
varying hyperspectral plant images.

Index Terms—Hyperspectral images, Time-varying, Interactive
visualization, High-throughput phenotyping

I. INTRODUCTION

With advances in digital imaging technology, hyperspec-

tral cameras have become more affordable and ubiquitous,

leading to an exponential growth of high-throughput imaging

systems in recent years [7], [18], [26]. These systems can non-

destructively capture the high-resolution spatial and spectral

information of objects. The resulting hyperspectral images

have significantly boosted researchers’ capability to obtain

detailed traits in applications in various scientific disciplines,

such as physics, biology, and geoscience.

Hyperspectral images are conventionally modeled as a 3D

data block, known as a hyperspectral cube. The x and y
dimensions reserve the spatial information of imaged objects.

The z (or λ) dimension contains the spectral information that

acts as a fingerprint for an object in the x and y space. A

hyperspectral cube is formed by stacking the images taken at

a sequence of wavelengths with a fixed view.

Researchers have developed plenty of approaches to ana-

lyzing hyperspectral images. A commonly used strategy is

to apply image fusion techniques [16], [17], [22], [23] to

summarize all hyperspectral images into a fused image for

feature identification. There are also studies of using machine

learning techniques, such as support vector machine (SVM)

and convolutional neural network (CNN), to classify different

regions [2], [15]. As hyperspectral imaging has been applied

for plants, plant scientists would like to capture the distribution

of biomarkers (e.g., water and chlorophyll) in a leaf and

identify the spectral ranges where these biomarkers have

strong interactions [7]. Traditional techniques cannot fulfill

these emerging hyperspectral imaging analysis requirements,

due to a loss of intrinsic relationships between the spatial and

spectral information in fused images.

Scientists demand new tools to analyze and visualize hy-

perspectral images in both the 2D spatial space and the

1D spectral space. However, as an important data type in

practical applications, hyperspectral images have not received

considerable attention in visualization research so far. Al-

though hyperspectral images can be conceptually modeled as

a cube, they are different from traditional volume data and

impose unique challenges of interpreting them. In a hyperspec-

tral cube, the spatial dimensions and the spectral dimension

have different physical meanings. In a traditional volume,

3D objects can be identified by their spatial characteristics

(e.g., gradient [13], curvature [14], size, and occlusion [28]).

However, these measures do not have comparable meanings in

the spectral space. Therefore, the existing volume visualization

techniques cannot be directly applied to hyperspectral cubes.

The main objectives of studying hyperspectral images can be

summarized as follows:

• Explore and identify bands with a strong spectral re-

sponse.

• Calculate and explore spectral features for each pixel in

the given bands.

The first objective focuses on reducing redundant information

without compromising the original hyperspectral images. The

second objective focuses on finding the most useful features

that can well represent the hyperspectral images.

In our work, we develop an interactive visualization tool

for hyperspectral images. Our new solution can facilitate users

from different domains to interactively explore and discover

features in regions of interest that may be difficult to identify

using traditional techniques. Our major contributions are:

• A data model to describe a hyperspectral cube with

uneven illumination.

• An information metric based design that allows users to

find the important bands interactively.

• A new visualization design that enables users to gain



spatial and spectral information simultaneously from a

hyperspectral cube.

We have demonstrated the effectiveness of our approach with

time-varying hyperspectral datasets of plants which are col-

lected using the high-throughput phenotyping system located

at the Nebraska Innovation Campus.

II. RELATED WORK

We review the existing analysis and visualization techniques

for hyperspectral images.

A. Clustering-based Methods

Some clustering-based methods focus on finding the best

bands [27], while others focus on comparing the spectral

curves. Here, we mainly discuss the methods that compare the

curves, as bands can be selected interactively in our design by

users. As the substances are characterized by different spectral

curves over all the bands, an intuitive solution is to cluster the

spectral curves of all pixels into different groups according

to their spectral curve shapes [20]. Clustering-based methods

do not deal with the spectral features directly. They mainly

compare each spectral curve with the cluster center and try to

group these spectral curves. The methods that focus on find

groups can partly achieve the second objective as the spectral

features of the clustering centers can be easily found.

However, in practice, it is nearly impossible to maintain

a homogeneous illumination during imaging, which leads to

different intensities for the same substance. Therefore, the

spectral curve of the same substance may have different scales

in different positions. The substances cannot be correctly

classified due to the effects of uneven illumination. We will

illustrate this issue using a synthetic dataset in Section III.

B. Machine Learning-based Methods

Machine learning has been widely used for the classification

of pixels in hyperspectral images. The supervised or non-

supervised learning of spectra is developed to classify the

regions in a 2D image based on certain properties. The maxi-

mum likelihood classification is commonly applied to remotely

sensed optical data. The maximum likelihood calculates the

probability that a pixel belongs to a cluster [15]. SVM with

different kernels and CNN have also been used to reach a

high accuracy of classification [2]. Although these methods

work very well in some cases, the machine learning-based

methods usually require a training process where labeled data

or ground truth is needed. It becomes hard to apply these

methods if a hyperspectral dataset contains no labels. There

are studies of using unsupervised machine learning such as

Self-Organizing Map (SOM) [25] to cluster hyper-dimensional

data without labels. The results can be better than the k-means

clustering for some hyperspectral images. Machine learning-

based methods are similar to clustering based methods in

terms of find spectral features. They partly achieve the second

objective as the spectral features of the classified data can be

found.

C. Image Fusion based Methods
Scientists also often leverage image fusion based methods

to reduce a hyperspectral cube to a 2D image and try to

maximize the information shown in the 2D image [16], [23].

Some dimension reduction methods (e.g., principal component

analysis (PCA), discrete wavelet transform (DWT)) [17], [23]

are commonly used for image fusion. For other image fusion

techniques, usually, one or more cost functions are constructed

and minimized to get 2D image fusion results [1].
Although PCA-based methods work very well at differenti-

ating different pixels, they still have some disadvantages [10].

PCA treats all the bands as independent dimensions without

considering the order of different bands. The result from

PCA is dependent on the relative size of substances. The

same substance may have different colors as the relative area

of the object containing the substance may change [3], [5].

Statistics, such as skewness and kurtosis, have been used for

the projection of hyperspectral data [8].
However, the traditional image fusion process suffers from

certain problems. It can be hard to distinguish different sub-

stances from an image fusion result, and scientists need to

retrieve the missing information by studying the entire images

of different substances again. If there are many substances in

the hyperspectral images, it is time-consuming for scientists

to plot all the spectra and compare them pairwise. We will

detail this issue in Section III.

D. Visualization based Techniques
To our knowledge, thus far, hyperspectral images have

received relatively little attention in the area of visualization.

Cui et al. [4] developed a visualization tool for image fu-

sion using convex optimization. Kim et al. [12] developed

an interactive visualization tool for hyperspectral images of

historical documents based on image fusion. Kim et al. [11]

used hyperspectral imaging to develop a 3D scanning system

to enhance the quantification of reflectance of the surface of an

object. Some work attempted to generate an enhanced fused

image ready to be visualized on a display [21], but did not

directly deal with the visualization of hyperspectral images.

III. BACKGROUND

We revisit the background of hyperspectral imaging and

discuss the advantages and the limitations of existing methods.

A. Hyperspectral Imaging
Different from VIS cameras, hyperspectral cameras can

capture hundreds or thousands of images at a series of bands

with a fixed view. The images can be stacked together to form

a volume or a hyperspectral cube. As shown in Figure 2, the x
and y dimensions of this cube provide the spatial information

for each pixel in the image of objects. The λ dimension con-

tains the spectral characteristics (or named spectral curve) for

each pixel. Researchers have developed plenty of approaches

to analyzing hyperspectral images. A commonly used strategy

is to apply image fusion techniques [16], [17], [22], [23] to

summarize all hyperspectral images into a fused image for

studying objects, as shown in Figure 1 (b).



(a) (b)

Fig. 1: Comparison between plant images taken by (a) a VIS

camera and (b) a hyperspectral camera.

B. Hyperspectral Cube

Fig. 2: The data model of hyperspectral cubes.

A set of hyperspectral images taken from the same scene can

be stacked along the λ dimension to form a hyperspectral cube.

For one hyperspectral image, a position (x, y) in the image

corresponds to a pixel. As a hyperspectral cube is a stack of

images, a position (x, y) corresponds to a set of voxels. The

intensity values of this set of voxels form a spectral curve that

reveals the spectral response of one point on an object in the

real world. We denote the set of voxels for a position (x, y)
as �L(x, y). We define each object as a continuous area with

only one type of substance. In practice, one object may reveal

different spectral curves due to inhomogeneous illumination.

For example, in Figure 2, we assume that the object P is

subject to uneven illumination. Therefore, the spectral curve
�L(x3, y3) at the position (x3, y3) of P has stronger spectral

response compared with the spectral curve �L(x2, y2) at the

position (x2, y2) of P . The shape of �L(x2, y2) and �L(x3, y3)
are similar but the scales of them are different. For the position

(x1, y1) on another object Q, the shape of the spectral curve
�L(x1, y1) is distinct from �L(x2, y2) or �L(x3, y3), which means

that �L(x1, y1) is from a different object.

C. Challenges of Hyperspectral Analysis

We use a synthetic dataset to illustrate the challenges of

hyperspectral analysis. As shown in Figure 3 (a), we assume

there are three substances, S1, S2, and S3, in the dataset,

colored as red, green, and blue, respectively. Figure 3 (d)

shows their spectral curves with different shapes. We assume

that there are 100 bands, leading to 100 images in total.

It is a challenge to distinguish these substances just using a

few individual bands due to the similarities and differences

of their hyperspectral curves. According to our model of

hyperspectral cubes, we note that the study of it is equivalent

to study the characteristics of the spectral curve �L(x, y) of

object S. An important fact in the hyperspectral data model

is that whether the objects can be detected depends on the

bands selected. This implication can be illustrated with the

synthetic dataset in Figure 3. The substances S1 and S2 can

be distinguished if all the bands are selected. However, if the

bands ranging from 90 to 100 are selected, where the spectra

for both substances are identical as shown in Figure 3 (d),

these two substances S1 and S2 cannot be distinguished. When

analyzing hyperspectral images of the plants, scientists may

distinguish a plant from the background using just one image.

However, the selected bands may not reveal the subtle details

between the stem and leaves. Thus, in order to identify these

substances, scientists usually need to explore the entire bands

one by one and back and forth, which is cumbersome.
Moreover, hyperspectral images typically suffer from vari-

ation of illumination [9], [24]. We will demonstrate this

phenomenon using the synthetic dataset. A pixel along the

λ axis can be treated as one hyper-pixel in a high dimensional

space. To illustrate the distribution of hyper-pixels, we select

sample values from three bands at 15, 50, and 85. The hyper-

pixels are then plotted in a 3D space using the sampled values.

In an ideal case, where the illumination is even, the hyper-

pixels for the three substances S1, S2, and S3 in the synthetic

dataset will appear as just three points in the high-dimensional

space, as shown in Figure 3 (g).
However, in practice, there is usually uneven illumination,

which leads to the scale changes of the hyperspectral curves.

For example, Figure 3 (b) shows a simple example where the

illumination is gradually reduced from the center, and Figure 3

(e) shows the corresponding scale changes of the hyperspectral

curves compared to Figure 3 (a). In this case, the hyper-pixels

of the three substances with uneven illumination form three

rays in the high-dimensional space (Figure 3 (h)) instead of

three points in the ideal case.
In practice, there may also be some blur caused by light

interference or diffraction, as shown in Figure 3 (c). Figure 3

(f) shows the scale changes of the hyperspectral curves. In this

case, the hyper-pixels can form into a set of rays of different

substances in the high-dimensional space, as shown in Figure 3

(i).
We can express this phenomenon in the following equation

for each spectral curve �L(x, y):

�L(x, y, k, b) = k(x, y)�L(x, y) + b(x, y) (1)

which means that a linear transform is applied on the spectral

curve �L(x, y), where k(x, y) is the scale and b(x, y) is a

constant at a position (x, y).
Let �L denote the whole hyperspectral cube, and K and B

denote the scales and constants for all the positions. Then we

have
�L = K�L+B (2)

Due to interference among the light from different sub-

stances, images are usually blurred such that the intensity of



one substance can change gradually to the intensity of another

substance. This phenomenon can be expressed in the following

equation:

�L(σ, μ) = G(σ, μ) ∗ �L(k) = G(σ, μ) ∗ (K�L+B) (3)

where G(σ, μ) is a Gaussian distribution with variance σ and

mean μ, and ∗ means convolution operation. Based on our

data model, normalization of hyperspectral curves can be a

suitable way to reduce the effects of uneven illumination. The

normalization is performed as dividing each spectral curve by

the maximum value of that curve. We will show the effects of

normalization in the next section.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3: The top row shows a simple synthetic dataset with three
substances S1, S2, and S3 with (a) even illumination, (b) uneven
illumination, and (c) further Gaussian blur. The middle row shows
the corresponding hyperspectral curves of the three substances under
different illumination conditions. The bottom row shows the distribu-
tion of hyper-pixels of the three substances in a 3D space under each
illumination condition. In each plot, red, green and blue correspond
to S1, S2, and S3, respectively.

D. Interactive Hyperspectral Visualization

A hyperspectral cube is fused into an image for visualization

in conventional approaches. Every spectral curve is reduced

to one pixel in the fused image. To process spectral curves,

a metric that gives similar scores for spectra with similar

shapes is desired. Generally, the spectral curves may be

evaluated by their peaks, valleys, or curvature characteristics.

An evaluation of all the spectral curves in a hyperspectral cube

produces a score image that has the same dimension as all the

hyperspectral images.

Since an object in a hyperspectral cube may not be known as

a priori and whether it could be discovered strongly depends

on the selection of bands, interactive selections of bands

and regions of interest (ROI) are desired functions to study

hyperspectral cubes. Real-time interaction is necessary for

scientists to explore and learn features in both the spatial and

spectral domains. The traditional methods typically generate a

fused image where the image is considered optimal and cannot

be changed once the image fusion is finished. Interactive

tools can solve this problem intrinsically, as the information

contained in the data cube can be dynamically extracted based

on selections of users. Another advantage of the interactive

exploration of the hyperspectral cube is that the spatial and

spectral information are evaluated simultaneously. If the spatial

ROIs are changed in the hyperspectral cube, the corresponding

visualization results will also change.

IV. RATIONALE

We are inspired to develop an interactive tool to extract

information inside hyperspectral cubes. We combine the spa-

tial and spectral information to guide users in the exploration

process. We summarize how we can make use of the global

statistics and spectral features to design an interface to explore

hyperspectral cubes. We will first use global statistics to help

users select the important bands. Then, we will calculate the

spectral features and allow users to select the spectral features.

Finally, we will visualize the images based on user selections.

The designed interface can not only achieve the two main

objectives of studying hyperspectral images but also help users

obtain good visualization results of the hyperspectral images.

A. Global Information

Generally, the dimension of hyperspectral images can be

reduced by band selection [27]. In order to guide the user in the

selection, we want to extract some global information. To get

the global information of hyperspectral images, some metric is

needed to evaluate each image. After consulting with domain

experts, we noticed that the bands that they are interested in

usually correspond to images with good contrast. An image

with good contrast usually contains more information than

images with low contrast. Entropy, as the most commonly used

measure of the information of images, can be a useful metric

for identifying images with good contrast. By assuming each

pixel in an image is independent, we can obtain the probability

of an intensity value in an image from the intensity histogram

of the image.

Entropy has a tolerance for noise and other extrinsic imag-

ing conditions. For example, if the intensity changes due

to illumination while the distribution remains the same, the

entropy remains the same. Noise or shift in pixels will only

give small changes in entropy.

The substances can either absorb or emit light, and thereby

the most important bands can correspond to either high or low-

intensity values. However, entropy always has a large positive

value when there is a good contrast in intensity, no matter if

the intensity is at a peak or a valley. As users usually tend to

select the peaks in a curve [19], the entropy curve can be very

useful in helping users in selecting the important bands.



(a) (b)

Fig. 4: The average intensity and entropy plots for images across
the entire bands. Two sets of hyperspectral images, including (a)
maize and (b) sorghum, are used to show the generalization of the
correlation between image intensity and entropy.

Some examples of the entropy and intensity over different

bands are shown in Figure 4 for different datasets, which

shows a high correlation between entropy and the average

intensity of all sets of images. We will take advantage of

this correlation to guide a user to select important bands for

analysis.

The first objective, namely identifying important bands, can

be achieved using a plot showing entropy of images over

the band index. Once we select a band, the next objective

is identifying the ROIs or substances in the given band by

evaluating spectral curves. In the following section, the metrics

used for evaluating spectral curves are introduced.

B. Spectrum Evaluation

An ideal classification of a 3D hyperspectral cube means the

same substances in the 3D cube are grouped together, and the

total number of clusters is equal to the total number of distinct

substances. To classify all the substances in a cube, one way

is to compare them like that in conventional clustering (e.g.,

k-means), and another way is to find a metric to characterize

the spectral curves L. In our design, we use the second way

for classification of spectral curves.

These metrics evaluate each spectral curve individually and

have a lower complexity O(N) that is preferable for real-time

applications. As the calculation of a metric for one spectral

curve is independent of the calculation for another, it is easy to

parallelize the whole process of computation. We use GPU to

accelerate the calculation and reach real-time user interaction.

The second objective of studying a hyperspectral cube is

equivalent to find the scores of the spectral curves using some

metrics. We visualize the results in a scatterplot and allow

users to select the possible clusters of points interactively.

To evaluate spectral curves, many statistical metrics can be

used. These metrics can be divided into three groups. The first

group contains metrics that are related to the raw moment,

such as intensity, energy, and Root Mean Square (RMS). The

second group includes metrics that are related to the central

moment, such as Mean Absolute Error (MAE), variance,

standard deviation, skewness, and kurtosis. The third group

contains metrics that are not directly related to the moment,

such as minimum, maximum, range, percentile, entropy, and

(a) (b) (c)

(d) (e) (f)

Fig. 5: The top row shows (a) the image fusion result generated

using PCA, (b) the image fusion result generated using PCA

after normalization of hyperspectral data, and (c) a fused image

generated using three spectral features, intensity, skewness,

and skewness of the first derivative. Each result in the bottom

row is generated using the corresponding method in the top

row for another synthetic dataset with the same substances but

different object sizes.

uniformity. Note that these metrics can be applied not only

on the spectral curves directly but also on the nth derivative

of the spectral curves. In our experiment, we also calculate

the skewness and kurtosis of the first derivative and second

derivative of the spectral curves. These derived features can be

used to characterize the spectral curves in a non-linear way.

However, as the number of features is still large, we want

to reduce the number of redundant features used. In order

to do that, we explored the relationship among these most

commonly used features using the correlation analysis. Based

on our correlation analysis, four features, intensity, skewness,

kurtosis, and kurtosis of the first derivative, are kept for further

analysis.

Spectral feature analysis has advantages over PCA. Eval-

uation of features depends only on the characteristics of the

spectral curve itself and does not depend on the comparison

with other spectral curves. If pseudo-colors are used, the colors

will be invariant with respect to the ROI selected, whereas the

colors of the image generated by PCA vary for different ROIs

of the same substances. PCA can project high dimensional

data into low dimensions. However, the projected values

only reveal the distances between different points without

direct correspondence to the properties of the spectral curves.

Different from PCA, in our method, the distribution of spectral

features corresponds to different shapes of spectral curves.

Some features, such as skewness, is scale-invariant, which

means that spectral curves that are only different in scale

will have the same feature value. This property can solve the

problem caused by uneven illumination.

An example is shown in Figure 5, where two sets of syn-



(a) (b) (c) (d)

Fig. 6: Examples of user selection. (a) A ROI in the red box of an
image selected by the user. (b) Entropy plot where the bands can be
interactively selected. (c) A 2D scatterplot formed using skewness
and skewness of the first derivative. (d) Different regions of different
selections in (c).

thetic data with different object sizes are used. For example,

the triangles in these two datasets have the same spectral

shape, but different sizes. Figure 5 (a)(b)(c) are results for the

first dataset, and Figure 5 (d)(e)(f) are results for the second

dataset. Figure 5 (a)(d) are the image fusion results obtained

by mapping the projected results corresponding to the largest

three eigenvalues to the three channels in the RGB color space.

These images are affected by the uneven illumination, and the

colors of the same substance are different in these images.

Figure 5 (b)(e) are obtained using the same method, but the

input images are normalized by the intensity of the spectral

curves. It can be seen that although normalization reduces the

effects of uneven illumination, the results of PCA are still ROI-

variant, as the colors of the triangles and circles are different

in different images. Figure 5 (c)(f) is obtained by mapping

intensity, skewness, and kurtosis to the three channels in RGB

color space. We can see that the feature-based image fusion

can not only reduce the effects of uneven illumination but also

be ROI-invariant as the triangles and circles have consistent

colors even if the sizes of the objects change. The feature-

based image fusion can also enhance the boundaries more

clearly, while it is hard to find the boundaries in the images

obtained by PCA.

V. INTERFACE DESIGN

We have designed our interface to allow users to select

and extract the features from the hyperspectral images easily.

The whole image is usually selected in the traditional ways.

However, analysis of the whole image may shadow some

details that appear locally in a small region. To overcome this

problem, we think it is necessary for users to define ROI based

on their needs, where they are allowed to select a small region

of the image for analysis. Figure 6 (a) shows an example of an

ROI defined by the user. An entropy curve is calculated for all

the images inside the selected ROI. Then, the user can continue

to select the bands by examing the shape of the entropy curve,

as shown in Figure 6 (b). The features of the corresponding

spectral curves in the hyperspectral cube can be evaluated after

the selection of bands. The yellow region in Figure 6 (b) shows

a selection of bands. In Figure 6 (c), we give an example of

the scatterplot of skewness and skewness of the first derivative.

The user can use any combination of the four features we

have kept after correlation analysis, which includes intensity

(a) (b) (c)

(d) (e) (f)

Fig. 7: Examples of user selection. (a) Image fusion based on PCA
(b) Image fusion based on PCA after normalization. (c) Image fusion
based on spectral features. (d) Selection of multiple bands as guided
by the entropy curve. (e) A 2D scatterplot formed using intensity
sum and skewness. (f) The leaves of the maize plant corresponding
to the selection in (e).

sum, skewness, kurtosis, and skewness of the first derivative.

Besides the scatterplot, other visual representations such as

parallel coordinates may also be used to visualize multidi-

mensional data [6]. We use scatterplots as they are already

good enough for users to differentiate different substances in

the hyperspectral images.

To visualize the scatterplot, we map each axis to one of

the RGB channels. This kind of mapping allows users to find

the correspondence between the points in the scatterplot and

the objects in the fused image. The scatterplot can show a

series of potential clusters, which can guide users to select the

corresponding points for one particular substance or object.

The user can brush the points in the plot, and a selection of

points corresponds to a set of pixels in hyperspectral images.

In the synthetic dataset, there are three substances S1, S2, and

S3. In Figure 6 (c), the pixels that correspond to them are

enclosed by the red, green, and blue boxes, respectively. We

visualize the selected pixels, as shown in Figure 6 (d), where

regions of S1, S2, and S3 are visualized using feature-based

image fusion. There are four fused images in Figure 6 (d).

Image 1 is the fused image where all the points are selected.

Images 2, 3, and 4 are fused images that correspond to the

selection of the points in the red, green, and blue boxes in

Figure 6 (c), respectively.

VI. RESULTS

A. Feature Selection

In this section, we show how our design can be used

to explore and identify different substances in hyperspectral

images interactively. We show the effectiveness of our design

using datasets from plant science.

The hyperspectral images of plants were taken with 243

bands (wavelengths from 550 nm to 1700 nm). Then, the

plants are placed in front of a white background in a chamber

with illumination from the ceiling. The light causes uneven



illumination where the upper part of the image has higher

intensities. The hyperspectral bands can be divided into three

ranges. The first range (550 nm - 700 nm) shows the response

of photosynthetic pigments, such as chlorophyll. The second

range (700 nm - 1100 nm) shows responses of cellular struc-

tures of plants. The third range (700 nm - 1750 nm) shows the

absorption of water content in the plants. In our experiment,

we will use only the first and the third ranges as phenotypes

of plants in these ranges are well studied. In order to analyze

the spectral features, the plants have to be segmented from the

background. As the background is a whiteboard and has high

reflectivity, we can segment the plant by removing pixels that

have high intensities in the hyperspectral images.

A set of fused images based on PCA are shown in Figure 7

(a). The large image is the whole image, while the zoomed-in

images are from two regions of the whole image as indicate

by the green and blue boxes in the whole image. It can be

seen that the colors in the whole image and the zoomed-in

images are quite different, although they are from exactly the

same dataset. As the relative size of the plant is different in the

whole and zoomed-in images, the results generated by PCA

are different. This kind of color variation caused by PCA will

make it very hard to compare different ROIs in one dataset

during user exploration. Another set of fused images based on

PCA after normalization is shown in Figure 7 (b), where the

whole image and the zoomed-in images also have different

colors. Figure 7 (c) contains images generated using our

interface. The whole image and the zoomed-in images have

exactly the same colors, which makes it quite convenient for

scientists to study different ROIs freely and compare different

parts of the plant.

Figure 7 (f) shows the selection of bands where the bands

in two ranges are selected in this case. Figure 7 (e) is the scat-

terplot of intensity and skewness. The red points correspond

to the plant leaves while the green points correspond to the

stem. Here we show an example of selecting the plant leaves.

As shown in the fused image in Figure 7 (f), the leaves of

the maize plant can be easily segmented for the whole image

as well as the zoomed-in images by selecting the same region

in the scatterplot in Figure 7 (e). As our interface is based

on spectral features, it is ROI-invariant. This kind of user

selection is hard to realize using previous methods as they

rely on the comparison between different spectral curves and

are not stable with respect to selections of different ROIs.

B. Time-Varying Selection

The time-varying hyperspectral images are the hyperspectral

images of plants taken over some time. As the shapes and

structures of plants change when they grow, analysis of

time-varying hyperspectral images is difficult using traditional

methods. As our method is based on spectral features, it can be

used not only to compare different ROIs but also to compare

plants at different time points. We give an example of a set of

time-varying hyperspectral images of a maize plant taken over

25 days. We first find the corresponding scatterplots similar

as the one shown in Figure 7 (e) for all 25 days. Then,

we stack these 25 scatterplots to form a 3D scatterplot, as

shown in Figure 8 (a). The points belong to different parts of

the plant can be easily selected. For example, a selection as

shown in the top view of the 3D scatterplot in Figure 8 (a)

corresponds to the stem of the plant. Note that the selection

here corresponds to the results from 25 days. Selected images

from 5 selected days (with a 5-day interval) are shown in

Figure 8 (b). The remaining leaves of these 5 days are shown

in Figure 8 (d). With our interface, the user can view the

changes in different parts of the plant over time with just

one selection. For example, it can be easily observed that

the length of the stem and the number of leaves change over

time. We have tested our design for several datasets, including

sorghum, maize, and tomato. Previous methods cannot provide

such an easy kind of selection for the analysis of time-varying

hyperspectral images as they are not ROI-invariant. If the first

two axes of PCA results are used to form scatterplots and plots

from 25 days are stacked together, as the sizes of the plants

change over time, a selection in the stacked scatterplots can

not lead to a clean selection of either stems or leaves.

VII. CONCLUSION

In this work, we propose a series of techniques for exploring

time-varying hyperspectral images. Since the hyperspectral

cube formed by hyperspectral images has one spectral dimen-

sion, the traditional image fusion methods lose information

by fusing all the images. We define the data model for

hyperspectral images and propose a new design that utilizes

global information and spectral features. In the traditional

image fusion methods, each image is treated as an individ-

ual dimension without considering the relationship between

images. The novelty of our work is the combination of global

information and spectral features in the design of the interface.

The global statistics such as entropy is utilized to measure

the global features, while some metrics such as intensity and

skewness are used to measure spectral features. The global

features can help users identify the most important bands as

users tend to select bands with high entropy. After the selection

of bands, we exploit 3D scatterplots of spectral features that

allow users to select the feature points. After the selection

of points, the corresponding substances in the time-varying

hyperspectral images will be visualized. Our design can lead

to clear separation of different substances for plants, which are

difficult to achieve using current methods. We show that our

design is invariant to the selection of ROIs, and it provides

an easy comparison between different regions or different sets

of hyperspectral images at different times. In future work, we

will try to combine the hyperspectral images with other types

of images, such as RGB and fluorescent images.
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Fig. 8: Examples of user selection for a time-varying dataset. (a) 3D scatterplot of the spectral features of one maize plant over 25 days.
The selection of the leaf points is performed on the top view of this scatterplot. (b) The selected stems from day 1, 6, 11, 16, and 21. (c)
The remaining leaves from these five days.
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